Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 172, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654265

RESUMO

BACKGROUND: To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS: The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS: Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION: The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.


Assuntos
Anti-Inflamatórios , Sobrevivência Celular , Curcumina , Células Epiteliais , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Anti-Inflamatórios/farmacologia , Células Epiteliais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Limbo da Córnea/efeitos dos fármacos , Células Cultivadas , Diarileptanoides/farmacologia , Epitélio Corneano/efeitos dos fármacos
2.
ACS Omega ; 9(7): 7679-7691, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405545

RESUMO

The phytochemical investigation of the whole plants of Coelogyne fuscescens Lindl. var. brunnea led to the discovery of three new phenolic glycosides, i.e., coelofusides A-C (1-3) and 12 known compounds (4-15). For the first time, we reported the nuclear magnetic resonance (NMR) data of 4-O-(6'-O-glucosyl-4″-hydroxybenzoyl)-4-hydroxybenzyl alcohol (4) in this study. The identification of the structures of newly discovered compounds was done through the analysis of their spectroscopic data [NMR, mass spectrometry, ultraviolet, Fourier transform infrared, optical rotation, and circular dichroism (CD)]. In comparison to anticancer drugs (i.e., etoposide and carboplatin), we evaluated anticancer potential of the isolated compounds on two different breast cancer cell lines, namely, T47D and MDA-MB-231. Human fibroblast HaCaT cells were used as the control cells. After a 48 h incubation, flavidin (8), coelonin (10), 3,4-dihydroxybenzaldehyde (11), and oxoflavidin (12) showed significant cytotoxic effects against breast cancer cells. Among them, oxoflavidin (12) exhibited the most potent cytotoxicity on MDA-MB-231 with an IC50 value of 26.26 ± 4.33 µM. In the nuclear staining assay, oxoflavidin induced apoptosis after 48 h in both T47D and MDA-MB-231 cells in a dose-dependent manner. Furthermore, oxoflavidin upregulated the expression of apoptotic genes, such as p53, Bax, poly(ADP-ribose) polymerase, caspase-3, and caspase-9 genes while significantly decreasing antiapoptotic protein (Bcl-2) expression levels.

3.
Mol Neurobiol ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087168

RESUMO

Dementia is the most common age-related problem due predominantly to Alzheimer's disease (AD) and vascular dementia (VaD). It has been shown that these contributors are associated with a high amount of oxidative stress that leads to changes in neurological function and cognitive impairment. The aim of study was to explore the mechanism by which hexahydrocurcumin (HHC) attenuates oxidative stress, amyloidogenesis, phosphorylated Tau (pTau) expression, neuron synaptic function, and cognitive impairment and also the potential mechanisms involved in induced permanent occlusion of bilateral common carotid arteries occlusion (BCCAO) or 2-vessel occlusion (2VO) in rats. After surgery, rats were treated with HHC (40 mg/kg) or piracetam (600 mg/kg) by oral gavage daily for 4 weeks. The results showed that HHC or piracetam attenuated oxidative stress by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) activity, and alleviated expression of synaptic proteins (pre- and post-synaptic proteins) mediated by the Wingless/Integrated (Wnt)/ß-catenin signaling pathway. Moreover, HHC or piracetam also improved synaptic plasticity via the brain-derived neurotrophic factor (BDNF)/Tyrosine receptor kinase B (TrkB)/cAMP responsive element binding protein (CREB) signaling pathway. In addition, HHC reduced amyloid beta (Aß) production and pTau expression and improved memory impairment as evidenced by the Morris water maze. In conclusion, HHC exerted remarkable improvement in cognitive function in the 2VO rats possibly via the attenuation of oxidative stress, improvement in synaptic function, attenuation of amyloidogenesis, pTau, and neuronal injury, thereby improving cognitive performance.

4.
EXCLI J ; 22: 466-481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534221

RESUMO

The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathogenesis of atherosclerosis and hypertension. It has been proposed and verified that hexahydrocurcumin (HHC), a metabolite form of curcumin, has cardiovascular protective effects. This study examined the effect of HHC on angiotensin II (Ang II)-induced proliferation, migration, and inflammation in rat aortic VSMCs and explored the molecular mechanisms related to the processes. The results showed that HHC significantly suppressed Ang II-induced proliferation, migration, and inflammation in VSMCs. HHC inhibited Ang II-induction of the increase in cyclin D1 and decrease in p21 expression in VSMCs. Moreover, HHC attenuated the generation of reactive oxygen species (ROS), and the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and matrix metalloproteinases-9 (MMP9) in Ang II-induced VSMCs. The proliferation, migration, inflammation, and ROS production were also inhibited by GKT137831 (NADPH oxidase, NOX1/4 inhibitor) and the combination of HHC and GKT137831. In addition, HHC restored the Ang-II inhibited expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). These findings indicate that HHC may play a protective role in Ang II-promoted proliferation, migration, and inflammation by suppressing NADPH oxidase mediated ROS generation and elevating PPAR-γ and PGC-1α expression. See also Figure 1(Fig. 1).

5.
Inflammopharmacology ; 31(4): 2023-2035, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37129718

RESUMO

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) have high mortality rates. Though corticosteroids are commonly used for the treatment of these conditions, their efficacy has not been conclusively demonstrated and their use can induce various adverse reactions. Hence, the application of corticosteroids as therapeutic modalities for ALI/ARDS is limited. Meanwhile, the aporphine alkaloid oxocrebanine isolated from Stephania pierrei tubers has demonstrated anti-inflammatory efficacy in murine/human macrophage cell lines stimulated by lipopolysaccharide (LPS). Accordingly, the primary objectives of the present study are to investigate the anti-inflammatory effects of oxocrebanine on LPS-induced murine alveolar epithelial (MLE-12) cells and its efficacy against LPS-induced murine ALI. Results show that oxocrebanine downregulates the abundance of interleukin (IL)-1beta, IL-6, and inducible nitric oxide synthase, as well as the phosphorylation of nuclear factor-kappaB (NF-κB), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38, protein kinase B (Akt), and glycogen synthase kinase-3beta signalling proteins in LPS-induced MLE-12 cells. Moreover, in a murine ALI model, oxocrebanine lowers lung injury scores and lung wet/dry weight ratios while reducing inflammatory cell infiltration. It also suppresses LPS-induced tumour necrosis factor-alpha and IL-6 in the bronchoalveolar lavage fluid and plasma. Moreover, oxocrebanine downregulates NF-κB, SAPK/JNK, p38, and Akt phosphorylation in the lung tissues of LPS-treated mice. Taken together, the foregoing results show that oxocrebanine provides significant protection against LPS-induced ALI in mice primarily by suppressing various inflammatory signalling pathways in alveolar epithelial cells and lung tissues. Hence, oxocrebanine might prove effective as an anti-inflammatory agent for the treatment of lung inflammation.


Assuntos
Lesão Pulmonar Aguda , Aporfinas , Síndrome do Desconforto Respiratório , Stephania , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos , Interleucina-6 , Stephania/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão/metabolismo , Aporfinas/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico
6.
Int Immunopharmacol ; 119: 110181, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119679

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that causes cognitive and memory decline. Neuroinflammation is currently considered as being an important pathology in AD. NLRP3, the nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a critical component of the innate immune response, which plays a key role in the development and progression of AD. Therefore, the NLRP3 inflammasome is one of the target treatments for AD. This study aimed to investigate the effect of festidinol, a flavanol isolated from Dracaena conferta, against NLRP3 inflammasome and blood-brain barrier damage in D-galactose and aluminum chloride-induced mice. The induced mice received D-galactose (150 mg/kg) and aluminum chloride (10 mg/kg) intraperitoneally for 90 days to generate cognitive impairment. Festidinol (30 mg/kg) and donepezil (5 mg/kg) were given by oral gavage for 90 days along with the induction. Then, learning and memory behavior, and molecular and morphological changes in the brain, which related to NLRP3 inflammasome, pyroptosis and the blood-brain barrier were measured. The results indicated that festidinol markedly decreased the escape latency and increased the time in the target quadrant in the Morris water maze test. Furthermore, festidinol significantly decreased the ionized calcium-binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Festidinol also markedly decreased the NLRP3 inflammasome pathway, interleukin 1 beta (IL-1ß), gasdermin-D, N-terminal (GSDMD-N) and caspase-3. Pertinent to the blood-brain barrier, festidinol only decreased tumor necrosis factor-α and matrix metallopeptidase-9, but did not restore the tight junction components. In conclusion, festidinol can restore learning and memory and provide a protective effect against the NLRP3 inflammasome and pyroptosis.


Assuntos
Doença de Alzheimer , Flavonoides , Inflamassomos , Piroptose , Animais , Camundongos , Cloreto de Alumínio/toxicidade , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Galactose , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Flavonoides/farmacologia
7.
J Biochem Mol Toxicol ; 37(3): e23279, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541345

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-ß1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Fígado/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
8.
Neurotox Res ; 40(5): 1348-1359, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018507

RESUMO

Permanent cerebral ischemia is a consequence of prolonged cerebral artery occlusion that results in severe brain damage. Neurotoxicity occurring after ischemia can induce brain tissue damage by destroying cell organelles and their function. Neferine is a natural compound isolated from the seed embryos of the lotus plant and has broad pharmacological effects, including blockading of the calcium channels, anti-oxidative stress, and anti-apoptosis. This study investigated the ability of neferine to reduce brain injury after permanent cerebral occlusion. Permanent cerebral ischemia in rats was induced by instigation of occlusion of the middle cerebral artery for 24 h. The rats were divided into 6 groups: sham, permanent middle cerebral artery occlusion (pMCAO), pMCAO with neferine and nimodipine treatment. To investigate the severity of the injury, the neurological deficit score and morphological alterations were investigated. After 24 h, the rats were evaluated to assess neurological deficit, infarct volume, morphological change, and the number of apoptotic cell deaths. In addition, the brain tissues were examined by western blot analysis to calculate the expression of proteins related to oxidative stress and apoptosis. The data showed that the neurological deficit scores and the infarct volume were significantly reduced in the neferine-treated rats compared to the vehicle group. Treatment with neferine significantly reduced oxidative stress with a measurable decrease in 4-hydroxynonenal (4-HNE), nitric oxide (NO), neuronal nitric oxide (nNOS), and calcium levels and an upregulation of Hsp70 expression. Neferine treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-2. This study suggested that neferine had a neuroprotective effect on permanent cerebral ischemia in rats by diminishing oxidative stress and apoptosis.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Benzilisoquinolinas , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Caspase 3/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nimodipina/uso terapêutico , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
9.
Inflammopharmacology ; 30(4): 1369-1382, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35831735

RESUMO

Plant-derived medicinal compounds are increasingly being used to treat acute and chronic inflammatory diseases, which are generally caused by aberrant inflammatory responses. Stephania pierrei Diels, also known as Sabu-lueat in Thai, is a traditional medicinal plant that is used as a remedy for several inflammatory disorders. Since aporphine alkaloids isolated from S. pierrei tubers exhibit diverse pharmacological characteristics, we aimed to determine the anti-inflammatory effects of crude extracts and alkaloids isolated from S. pierrei tubers against lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Notably, the n-hexane extract strongly suppressed nitric oxide (NO) while exhibiting reduced cytotoxicity. Among the five alkaloids isolated from the n-hexane extract, the aporphine alkaloid oxocrebanine exerted considerable anti-inflammatory effects by inhibiting NO secretion. Oxocrebanine also significantly suppressed prostaglandin E2, tumour necrosis factor-α, interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase, and cyclooxygenase (COX)-2 protein expression by inactivating the nuclear factor κB, c-Jun NH2-terminal kinase, extracellular signal-regulated kinase 1/2, and phosphatidylinositol 3-kinase/Akt inflammatory signalling pathways. Molecular docking analysis further revealed that oxocrebanine has a higher affinity for toll-like receptor 4/myeloid differentiation primary response 88 signalling targets and the COX-2 protein than native ligands. Thus, our findings highlight the potential anti-inflammatory effects of oxocrebanine and suggest that certain alkaloids of S. pierrei could be used to treat inflammatory diseases.


Assuntos
Aporfinas , Stephania , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Aporfinas/metabolismo , Aporfinas/farmacologia , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Stephania/metabolismo
10.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567007

RESUMO

Turmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical, with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, compared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and can serve as prospective candidates for in vivo anticancer activity evaluation.

11.
Biochim Biophys Acta Mol Basis Dis ; 1868(3): 166317, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883248

RESUMO

Hexahydrocurcumin (HHC), a major metabolite of curcumin, possesses several biological activities such as antioxidant, anti-inflammation, and cardioprotective properties. This study aimed to investigate the effect of HHC on high blood pressure, vascular dysfunction, and remodeling induced by N-nitro L-arginine methyl ester (L-NAME) in rats. Male Wistar rats (200-250 g) received L-NAME (40 mg/kg) via drinking water for seven weeks. HHC at doses of 20, 40 or 80 mg/kg or enalapril 10 mg/kg was orally administered for the last three weeks. Blood pressure was measured weekly. Rats induced with L-NAME showed the development of hypertension, vascular dysfunction, and remodeling as demonstrated by an increase in wall thickness, cross-sectional area, and collagen deposition in the aorta. The overexpression of nuclear factor kappa B (NF-кB), vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), tumor necrosis factor-alpha (TNF-α), phosphorylated-extracellular-regulated kinase 1/2 (p-ERK1/2), phosphorylated-c-Jun N-terminal kinases (p-JNK), phosphorylated-mitogen activated protein kinase p38 (p-p38), transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinase-9 (MMP-9) and collagen type 1 was observed in L-NAME-induced hypertensive rats. Increased oxidative stress markers, decreased plasma nitric oxide (NO) levels and the down-regulation of endothelial nitric oxide synthase (eNOS) expression in aortic tissues were also found in L-NAME-induced rats. Moreover, L-NAME-induced rats showed enhanced synthetic protein expression in aortic tissues. These alterations were suppressed in hypertensive rats treated with HHC or enalapril. The present study shows that HHC exhibited antihypertensive effects by improving vascular function and ameliorated the development of vascular remodeling. The responsible mechanism may involve antioxidant and anti-inflammation potential.


Assuntos
Curcumina/análogos & derivados , Hipertensão/tratamento farmacológico , NG-Nitroarginina Metil Éster/toxicidade , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Pressão Sanguínea , Curcumina/farmacologia , Inibidores Enzimáticos/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Ratos , Ratos Wistar
12.
Bioorg Chem ; 110: 104799, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730671

RESUMO

The isopimarane diterpene, 1α,11α-dihydroxyisopimara-8(14),15-diene (1), is the major constituents from the rhizomes of Kaempferia marginata (Zingiberaceae), a Thai medicinal plant. The microbial transformation of parent compound 1 by the fungus Cunninghamella echinulata NRRL 1386 gave five new metabolites, 7α,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (2), 3ß,7α,11α-trihydroxy-1-oxoisopimara-8(14),15-diene (3), 7ß,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (4), 7α-hydroxy-1,11-dioxoisopimara-8(14),15-diene (5) and 1α,7ß,11α-trihydroxyisopimara-8(14),15-diene (6), together with three known metabolites, 7-9. The structures of the new metabolites were elucidated by spectroscopic techniques. The known compounds were identified by comparison of the spectroscopic and physical data with those of reported values. The parent compound 1 and the metabolites have been neuroprotective activities evaluated against Aß25-35-induced damage in human neuroblastoma cells (SK-N-SH). Among them, compounds 1-3, 5 and 7-9 had significant neuroprotective activities at a concentration of 2.5 µM. The results demonstrated that these compounds might be worth for further development into therapeutic agents for the treatment of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Biotransformação , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Zingiberaceae/química , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Mol Med Rep ; 23(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495830

RESUMO

Trienones are curcuminoid analogues and are minor constituents in the rhizomes of numerous Curcuma plant species. Studies investigating the biological activities of trienones, particularly their anti­inflammatory activities, are limited. In the present study, the trienone 1,7­bis(4­hydroxy­3­methoxyphenyl)­1,4,6­heptatrien­3­one (HMPH) was structurally modified from curcumin using a novel and concise method. HMPH was shown to exhibit potential anti­inflammatory effects on lipopolysaccharide (LPS)­activated RAW264.7 macrophages. Furthermore, LPS­induced nitric oxide secretion in RAW264.7 cells was markedly and dose­dependently inhibited by HMPH; in addition, HMPH had a greater efficacy compared with curcumin. This inhibition was accompanied by the suppression of inducible nitric oxide synthase and cyclooxygenase­2 expression, as well as pro­inflammatory cytokine secretion. To elucidate the molecular mechanism underlying the anti­inflammatory effects of HMPH, the effects of this compound on nuclear factor­κB (NF­κB) translocation were assessed. HMPH significantly inhibited the translocation of p65 NF­κB into the nucleus to a greater extent than curcumin, thus indicating that HMPH has more potent anti­inflammatory activity than curcumin. In addition, an in silico modelling study revealed that HMPH possessed stronger binding energy to myeloid differentiation factor 2 (MD2) compared with that of curcumin, and indicated that the anti­inflammatory effects of HMPH may be through upstream inhibition of the inflammatory pathway. In conclusion, HMPH may be considered a promising compound for reducing inflammation via targeting p65 NF­κB translocation and interfering with MD2 binding.


Assuntos
Curcumina/análogos & derivados , Lipopolissacarídeos/toxicidade , Antígeno 96 de Linfócito , Macrófagos/metabolismo , Fator de Transcrição RelA , Animais , Curcumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/metabolismo , Macrófagos/patologia , Camundongos , Células RAW 264.7 , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo
14.
J Nat Prod ; 83(1): 14-19, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31873014

RESUMO

Six new isopimarane diterpenes, marginaols A-F (1-6), along with eight known compounds (7-14), were isolated from the rhizomes of Kaempferia marginata. The structures and absolute configurations of 1-6 were established on the basis of spectroscopic methods and the experimental and calculated ECD data as well as comparison with the literature values. Most of the isolated compounds were tested for their nitric oxide (NO) inhibitory effects in lipopolysaccharide-activated RAW264.7 cells. Among them, marginaol B (2) was found to reduce NO levels in murine macrophage cells with an IC50 value of 28.1 ± 1.7 µM.


Assuntos
Anti-Inflamatórios/química , Diterpenos/química , Lipopolissacarídeos/química , Zingiberaceae/química , Abietanos , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Rizoma/química
15.
Biomolecules ; 9(9)2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527550

RESUMO

Crinumasiaticum is a perennial herb widely distributed in many warmer regions, including Thailand, and is well-known for its medicinal and ornamental values. Crinum alkaloids contain numerous compounds, such as crinamine. Even though its mechanism of action is still unknown, crinamine was previously shown to possess anticancer activity. In this study, we demonstrate that crinamine was more cytotoxic to cervical cancer cells than normal cells. It also inhibited anchorage-independent tumor spheroid growth more effectively than existing chemotherapeutic drugs carboplatin and 5-fluorouracil or the CDK9 inhibitor FIT-039. Additionally, unlike cisplatin, crinamine induced apoptosis without promoting DNA double-strand breaks. It suppressed cervical cancer cell migration by inhibiting the expression of positive regulators of epithelial-mesenchymal transition SNAI1 and VIM. Importantly, crinamine also exerted anti-angiogenic activities by inhibiting secretion of VEGF-A protein in cervical cancer cells and blood vessel development in zebrafish embryos. Gene expression analysis revealed that its mechanism of action might be attributed, in part, to downregulation of cancer-related genes, such as AKT1, BCL2L1, CCND1, CDK4, PLK1, and RHOA. Our findings provide a first insight into crinamine's anticancer activity, highlighting its potential use as an alternative bioactive compound for cervical cancer chemoprevention and therapy.


Assuntos
Alcaloides de Amaryllidaceae/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Crinum/química , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias do Colo do Útero/metabolismo , Vimentina/metabolismo , Alcaloides de Amaryllidaceae/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Carboplatina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Extratos Vegetais/química , Piridinas/farmacologia , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/tratamento farmacológico , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA